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A SIMULATION STUDY

OF RANDOM CAPS ON A SPHERE

H. Solomon and C. Sutton

Abstract: This paper describes the computer simulation of a coverage problem in geometric probability,

that of placing random caps on the surface of a sphere. The simulation results were compared with

exact values where known and the differences were negligible. This suggested the use of simulation

results to assess several approximation formulas in the literature.

1. Introduction

Consider a sphere of unit radius on which are placed N spherical caps subtending a

half angle a at the center of the sphere (0 < a :5 w/2). Assume that the centers of these

caps are independently and uniformly distributed over the surface of the sphere. We seek to

approximate the probability P(N) that the sphere is completely covered. An exact expression

for P(N) is presently not known except for several special cases, see Solomon (1978).

An approximation of P(N) can be obtained via computer simulation as follows. For each

of n trials we generate N random caps on the surface of a unit sphere. We let Mm1 denote

the number of trials in which the caps completely cover the sphere. Then pNv,n = MN,"In is

an approximate value of P( N). As n increases, the approximation should approach the exact

value.

In order to determine whether or not the caps of a given trial completely cover a sphere,

let us define a crossing as being a point of intersection of the circular boundaries of two

overlapping caps. Then if there is an uncovered crossing, some area of the sphere outside

the two overlapping caps must also be uncovered. Conversely, if at least two caps overlap,

then the boundary of any uncovered area on the sphere must contain an uncovered crossing.



Thus we find that the sphere is completely covered if and only if there are at least two caps

which overlap and every crossing is covered. This is the essential fact on which the simulation

program is based.

Gilbert (1965) used the preceding idea to perform a similar simulation; however, his

study was rather small and the results do not provide enough data with which to evaluate

the accuracy of the various approximation formulas which have been suggested for P(N).

Prior results were also achieved by Moran and Fazekas de St. Groth (1962) by employing a

small physical simulation. We desire to assess the accuracy of the suggested approxims.tion

formulas and have therefore performed a large computer simulation. Some of the main steps

incorporated in our simulation program are described below.

2. Simulation

Random points on the surface of the sphere, which provide centers for the caps, are

obtained as follows. For each point pi we first generate qi,1, qi,2, and qi.s randomly, each

according to a normal distribution with mean 0 and variance 1. We then perform a projection

by letting

Pi, =

Pi,= -q,

where

IIqtI = (q?, + q,2 + q;,).

Due to the symmetry of the spherical normal distribution, the point pi - (pi,1,pi,2,pi,s) so

obtained will be a random observation from a distribution which is uniformly distributed over

the surface of the sphere.

A cap intersects another cap if its center falls within a great circle distance 2a from the

center of the other cap. Letting d(a, b) denote the straight line distance between two points a

and 6, we then have that the cap with center a intersects the cap with center b if and only if

arcsin(d(a,b)/2) < a.
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Suppose it occurs that the cap with center a = (a,, a2, a3) intersects the cap with cen-

ter b = (b, b2, 63). Then two crossings are formed, one on each side of the great circle arc

connecting points a and b. Denoting the midpoint of this arc by m, the crossings will lie on

the great circle which forms a perpendicular intersection at the point m with the great circle

passing through a and b. Using spherical trigonometry we obtain that the great circle distance

between each crossing and the point m is given by

c os[ a, osI
arccos I cos [ar ____ = arccos 1 I f

Denote this distance by -1, and call the two crossings formed z and y.

We can determine the Cartesian coordinates (z 1, z2, z) of z and (V, y2, ys) of y in the

following manner. Set v = (VI,v2,vs) equal to (b, - at,b2 - a2, b3 - a3). Let jjvjj denote

the length of the vector v. Let 0 be the angle between the positive x-axis and the vector

(vj, v2,0), measured in the direction from the positive x-axis towards the positive y-axis. Let

4 = arcsin(vs/IIvII). Consider the following series of rotation of axes. First rotate about the

z-axis an angle 0 in the direction of (VtI,v 2,0). Then rotate about the new y-axis an angle

0 towards the positive z-axis. Next we rotate about the new x-axis an angle -f towards the

positive y-axis. Now if we reverse the direction of the first two rotations, and rotate about the

y-axis by 4' and then about the z-axis by 0, the new coordinates of m will be the coordinates

of the crossing z in the original system. This sequence of rotations of axes is equivalent to

rotating the sphere through an angle -1 about an axis that passes through the center of the

sphere and which is parallel to the vector v. The coordinates of y are found in the same way,

except that we rotate about the x-axis by an angle -y.

A crossing formed by two caps will be covered if the great circle distance between the

crossing and the center of any of the N-2 other caps is less than a. Equivalently, we can check

whether or not the straight line distance is less than 2 sin(a/2).

Simulations were done using a = r/2 and N = 4, 5,...,13. This value of a was selected

since exact values for P(N) have been determined in this case and hence can serve as anchors

in our simulation study. J. G. Wendel (1962) showed that if N points are scattered at random

on the surface of the unit sphere in n-space, the probability that all the points lie on some
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hemisphere is given by

2 -N+1 E (N k 1).
k=o

This expression yields, as a special case, the result that for spherical caps of angular radius

a = r/2

(I) P(N) = I -2-N(N 2 - N + 2).

For each value of N 20,000 trials were accomplished. The number of covered spheres out

of 20,000 trials, mN,200, is binomially distributed with parameters n = 20,000 and p = P(N).

Hence the standard deviation of PN,20000 (= rN,ooo/20000) is given by

SDN,200 = P(N)(- P (N))
S Dz, sooo= V 20000 "

The following results give, for each value of N, the exact value of P(N) for a = r/2 , our

approximation PN,2000 , and the value of rN,2ooo = (PN,2000 - P(N))/SDNooo.

N P(N) PN,20000 rN,2oooo

4 0.12500 0.12550 0.21
5 0.31250 0.31555 0.93
6 0.50000 0.50030 0.08
7 0.65625 0.66055 1.28
8 0.77344 0.77145 -0.67
9 0.85547 0.85720 0.70
10 0.91016 0.91100 0.42
11 0.94531 0.94430 -0.63
12 0.96729 0.96825 0.76
13 0.98071 0.98090 0.20

These results serve to validify our simulation program.

3. Moran and Fazekas de St. Groth results

We desire to investigate the various formulas that have been developed to approximate

P(N). First the formulas will be compared for the case of a = 53.43*. This value of a is chosen

since it has been considered by previous investigators (because of a biological application). To

serve as a basis for the comparisons we estimated P(N) using our simulation program for
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N = 10, 15, 20,... ,60( and a = 53.43°). Each estimate is based on 20,000 trials. We note that

even for 20,000 trials the standard deviation of the estimator PN,200o can be as large as 0.0035

for some values of N. Hence the displayed simulation results in this paper may indicate more

accuracy than is actually present.

Moran and Fazekas de St.Groth (1962) used a method of moments approach to derive

two approximation formulas for P(N). Under the assumption that the uncovered region of the

sphere consists of a single region (which will always be the case when a = r/2 and should be

nearly true for a close to r/2) they developed

(2) P(N) = 1- Ir2[E(Y)]2/E(Y 2),

where Y denotes the proportion of the surface not covered. It is found that

E(Y) = cos 2N(a/2)

and the calculation of E(Y 2) may be accomplished via numerical integration using

(3) E(y 2 ) 2 1 - fm] sine do

and

(4) ' f(4)=_ [1- arccos(1t,,02))] cos a + _arccos(!!$j11) (0< 4 5 2a)

4r cosa (2a <4' <1 ).

Under the hypothesis that the number of disjoint uncovered regions has a Poisson distri-

bution and that the areas of the individual uncovered regions are distributed independently,

Moran and Fazekas de St. Groth derived

(5) P(N) = exp (-I 2(E(Y2)[E(Y)]-2 - }-1).

They expected that the actual value of P(N) should be between the values given by (2) and

(5).

In the table below we give our simulation results for P(N) for a = 53.43° based on 20,000

trials for each value of N, as well as the values obtained from both of the formulas of Moran

and Fazekas de St. Groth.
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N Simulation (2),(3)&(4) (5),(3)&(4)

10 0.0003 -2.6119 0.0000
15 0.0465 -1.3333 0.0120
20 0.2752 -0.2882 0.1750
25 0.5763 0.3643 0.4821
30 0.7846 0.7085 0.7336
35 0.8903 0.8738 0.8785
40 0.0556 0.9474 0.9482
45 0.0837 0.9787 0.9788
50 0.9929 0.9915 0.9916
55 0.9974 0.9967 0.9967
60 0.9988 0.9987 0.9987

It appears that both approximation formulas converge to a common value as N increases;

however, they do not sandwich the simulation value as was anticipated by Moran and Fazekas

de St. Groth. Rather, both formulas tend to underestimate P(N).

In their paper, Moran and Fazekas de St. Groth did not use (3) and (4) in their calcula-

tions of P(N). Instead they use a saddlepoint method to arrive at

(6) 1n2 = IE(Y) [+ N 2 tan2(a/2) 1-I

as an approximation of E(Y2 ). It is interesting to note that making use of this substitution

leads to values of P(N) which better approximate these simulation values. A comparison is

presented in the table below, where for each case it can be seen that the approximation (6)

yields a better estimate.

N Simulation Value from Value from Value from Value from
value (2),(3)&(4) (2) and (6) (5),(3)&(4) (5) and (6)

10 0.0003 -2.6119 -2.6814 0.0000 0.0000
15 0.0465 -1.3333 -1.2616 0.0120 0.0154
20 0.2752 -0.2882 -0.2163 0.1750 0.1991
25 0.5763 0.3643 0.4050 0.4821 0.5084
30 0.7846 0.7085 0.7279 0.7336 0.7498
35 0.8993 0.8787 0.8815 0.8785 0.8857
40 0.9556 0.9474 0.9503 0.9482 0.9511
45 0.9837 0.9787 0.9798 0.9788 0.9799
50 0.9929 0.9915 0.9920 0.9916 0.9920
55 0.9974 0.9967 0.9969 0.997 0.9969
60 0.9988 0.9987 0.9988 0.9987 0.998
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For a = 53.43 ° and N = 10,15, ...,60 we found that the combination of (5) and (6) constituted

the best approximation for P(N) produced by Moran and Fazekas de St. Groth.

4. Gilbert developement

E. N. Gilbert (1965) developed upper and lower bounds for P(N). Let A denote the

probability that any specified point on the sphere will be covered by a randomly placed cap,

so that

A= ( - cos a) = sin(a/2).
2

The lower bound for P(N) is given by

(7) 1 - 4N(N - l)A(l - A)N1.
3

Gilbert also gives

(8) 1 - (1 - A)N

as a general upper bound for P(N). This is a weak upper bound. For the specific case of

a = 53.43o a better upper bound can be found. The dominant terms of this closer upper

bound are

(9) 1 - 6(1 - A)N.

Note that (8) is just the probability that some fixed point V on the sphere is covered, and

notice that the probability that V is covered exceeds the probability that the entire sphere

is covered. To arrive at (9), consider points V1,V 2,... ,V which are points of intersection of

the sphere and of a regular octahedron inscribed within the sphere. The method of inclusion

and exclusion can be used to find an exact expression for the probability that the set of six

vertices is covered by N . This probability will be an upper bound for P(N). For large N, (9)

gives the dominant terms of this expression. It can be seen from the table below that while

the upper and lower bounds do indeed bracket the simulation values, neither provides a very

good estimate of P(N).
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N lower bound (7) simulation upper bound (9)

10 -2.1790 0.0003 0.3725
15 -1.3989 0.0465 0.7970
20 -0.4039 0.2752 0.934
25 0.2831 0.5763 0.98
30 0.8638 0.7848 0.9931
35 0.8513 0.8993 0.9978
40 0.9370 0.9556 0.9993
45 0.9741 0.9837 0.9998
50 0.9896 0.992 0.999
55 0.9959 0.9974 1.0000
60 0.994 0.9988 1.0000

5. Comparison of approximations for a =53.43o

R. E. Miles (1969) provides yet another way of approximating P(N). Theorem 3 of his

paper yields, as a special case, the approximation

(10) 1 - 2-NN(N - 1) sin2 a(1 + c0sa)N-2

for P(N). The table below compares values for a = 53.43* obtained from (10) with our

simulation results. The best estimates of Moran and Fazekas de St. Croth, using (5) and (6),

and the best estimates of Gilbert, using his lower bound (7), are included for comparison.

N simulation Miles Moran and Gilbert
result Fazekas de St. Groth

10 0.0003 -1.3842 0.0000 -2.170
15 0.0465 -0.799 0.0154 -1.3989
20 0.2752 -0.0529 0.1991 -0.4039
25 0.5763 0.4623 0.5084 0.2831
30 0.7848 0.7479 0.7498 0.6638
35 0.8993 0.8885 0.8857 0.8513
40 0.9556 0.9527 0.9511 0.9370
45 0.9837 0.9808 0.9799 0.9741
50 0.9929 0.9m2 0. 9920 0.9896
55 0.9974 0.9970 0.9969 0.9959
60 0.9988 0.9988 0.9998 0.994

We can see that although Moran and Fazekas de St. Groth's candidate does the best for the

smaller values of N, Miles' formula seems to be the most accurate for the higher values of N.

We note that each of the formulas appear to underestimate P(N).
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6. Comparison of approximations for a = f/2

In order to provide another basis of comparison for the various approximation schemes,

we have also calculated each method's estimate of P(N) for a = r/2 and N = 4,5,6,..., 25.

We can judge the accuracy of the estimates by comparing them with the exact value of P(N)

obtained from (1).

Let us first examine the four candidates from the paper of Moran and Fazekas de St.

Groth. Recall that they derived (2) and (5) from different hypotheses, and that for each

formula we can either use the exact value of E(Y2 ) obtained by numerical integration or we

can make use of the approximation (6). For N = 5,10, 15, 20,25 (and a = r/2) the estimates

of P(N) from these four methods, as well as the known values of P(N), are displayed in the

table below.

N P(N) Value from Value from Value from Value from
(2),(3)&(4) (2) and (6) (5),(3)&(4) (5) and (6)

5 0.3125 -0.5009 -0.0897 0.1157 0.2470

10 0.9102 0.8640 0.8927 0.8695 0.8961

15 0.9935 0.9915 0.9928 0.9915 0.9928

20 0.9996 0.9996 0.996 0.9996 0.9996
25 1.0000 1.0000 1.0000 1.0000 1.0000

One can see that for a = r/2, the best estimate for P(N) comes from using (5) and (6). This

was also the case for a = 53.43 ° . Also note that each approximation formula underestimates

P(N), as was the case previously. Because there is only one uncovered region when a = r/2, it

is somewhat surprising that (5) approximates P(N) better than does (2), since (2) was derived

under the hypothesis that there was only one vacant region.

For a = ir/2 we can again use (7) to obtain a lower bound for P(N), and we can use (8)

to obtain an upper bound for P(N). These bounds, both by Gilbert, and the exact value of

P(N) are given below for various values of N.

N lower bound (7) known value (1) upper bound (8)

5 0.1667 0.3125 0.9688
10 0.8828 0.9102 0.9990
15 0.9915 0.9935 1.0000
20 0.9m95 0.9906 1.0000
25 1.0000 1.0000 1.0000



In the table below we display the approximated values of P(N) derived from the work

of Miles. equation (10). Also shown are the best approximations of Moran and Fazekas de

St Groth. (5) used with (6), and Gilbert's lower buuM-, (7). The known values of P(N) from

equation (1) are also given.

N known Miles Moran and Gilbert

v'alue Fazekas de St. Groth

4 0.1250 0.2500 0.0903 0.0000
6 0. 500 0.5313 0.4324 0.3750
8 0.7734 0.7813 0.7300 0.7083
10 0.9102 0.9121 0.8961 0.8828
12 0. 9C073 0.9678 0.9629 0.9570
14 0.098 0.0889 0.9875 0.9852
16 0.990 0. 9M6 0.9959 0.9951
18 0.9988 0.9988 0.9987 0.9984
20 0.9996 0.999 0.9996 0.9995
22 0.9999 0.9999 0.9999 0.9999
24 1.0000 LO00M 1.0000 1.0000

It can be seen that the formula of Miles provides the most accurate estimates of P(N), and

also that Moran and Fazekas de St. Groth's candidate is better than Gilbert's. Note that

Miles' formula overestimates P(N) for this value of a, whereas before, with a = 53.430, it

* underestimated P(N). It is interesting to note that for a = w12 Miles' formula reduces to

P(N) F-- 1 - 2-N (N 2 - N)

which is very similar to the exact result,

P(N) = I - 2-NV(N 2 - N + 2).
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